Testing strength and validity of Hazard Band engines

NVvA 13 april 2016, 11:15 co-project/co-presentation Erik.Vanmiert@Solvay.com Theo Scheffers@TSAC.nl

Hazard band: if no OELV exists

- Hazard part of Control Banding
- First done in pharmacy (Naumann, 1996)
- COSHH (1999, R-phrases based)
- Spaltenmodell, EMKG
- In-company SOLVAY OEB,.....
- SEIRICH (France INRS)
- ILO-toolbox (WHO)
- (semi) commercial Stoffenmanager RP(NL) /CHEMHYSS (Fr)/ ChemRADE (NL) ??

Realm of hazard bands

- >172.000 substances identified (DOHSBase 16-01)
- 110.000 notified in the EU as being used
- Substances with OELV:
 - grow 800 (1990) \rightarrow 6000
 - 4000 LV/BM
 - 3662 DNELs
 - 2609 Kick-off's (CLH)

🗁 🖊 <i>i</i> 🤣 🚸											
Zoeken		Identiteit	E	igenschappen	G	renswaarden 1/21	Meetmethode	n 1/16			
– Grenswaarden & schadelijkhe	eidsinform	atie, hiërarchisch georderd —									
Wettelijk:		Bron		Onderbouwing		Verbijzondering (als)	Medium grenswaar	Gren	Dimensie	Ref	Dimens
•		DFG 2014, Mitteilung 50		DFG MAK- und BAT-werte I	_iste	Se, Inhaleerbare fractie	Werkplekatmosfeer	0,02	mg/m3	8	Uur
		DFG 2014, Mitteilung 50		DFG MAK- und BAT-werte I	_iste	Se, Inhaleerbare fractie	Werkplekatmosfeer	0,16	mg/m3	15	Minuter
		2014 TLVs and BEIs with 7t	h Edition D	ACGIH		Se, "total" particulate ma	Werkplekatmosfeer	0,2	mg/m3	8	Uur
		Deutsche Forschungsgemei	inschaft	DFG 2013, Mitteilung 49		Seleen	Serum	150	ug/l	0	Not criti
				WGD 1989 RA 07			Werkplekatmosfeer	0,1	mg/m3	8	Uur
		EH 40/2005 Edition 2011, V	√EL			Se, inhalable fraction	Werkplekatmosfeer	0,1	mg/m3	8	Uur
Regulation Standard - 29 CF	R 1910.1	OHSA-PEL 1910.1000 (Tab	le Z1)				Werkplekatmosfeer	0,2	mg/m3	8	Uur
REACH Art 10 full dossier reg	gistration	GESTIS DNEL Database					Werkplekatmosfeer	0,05	mg/m3	0	
		see https://www.dohsbase.	nl/en/cont	DOHSBase 2014 kick-off		Inhalable particles	Werkplekatmosfeer	0,1	mg/m3	8	Uur

 ~104.000 substances used in EU without limit value, but GHS/CLP classified: ECH ECHA's C&L inventory \rightarrow Regulation Addressing Chemicals

– HB-engine in Control Banding

C&L Inventory

This database contains classification and labelling information on notified and registered substances received from manufacturers and importers. It also includes the list of harmonised classifications. The database is refreshed regularly with new and updated notifications. However, updated notifications cannot be specifically flagged because the notifications that are classified in the same way are aggregated for display purposes.

Classifications derived from joint submissions to the REACH registration process are flagged accordingly. For more information on these substances, please consult the Registered substances database

Please note that some of the information on C&L Inventory may belong to third parties. The use of such information may therefore require the prior permission of the third party owners. Please consult the Legal Notice for further information.

different HB-engines allocate H/EUHcodes in different bands

Hazard band	DGUV IFA Spaltenmodell	НЅЕ СОЅНН	BAUA EMKG (inhalation)*	Solvay OEB
E/5	300, 310, 330 (Tox) 340, 350, 3501 (CM) EU032 (Tox gas release)	340, 341, 350(i) (CM) 334 (S) EU070 (<u>Tox</u>)	340, 350, 350i (CM) 360 _F (R)	372 (Tox) 340, 350 (CM) 334 (ICS)
D/4	301, 311, 331, 370, 372 (Tox) 341, 351, 360 _{xy} (CMR) EUH029, EUH031 (Tox gas release) 317, 334, 318, EUH070 (ICS)	300, 310, 330, 372 (<u>Tox</u>) 351, 360 _{xy} , 361, 362 (CR)	300, 330, 372 (<u>Tox</u>) 360 _D (R) EUH032 (<u>Tox gas release</u>)	300, 310, 330; 370, 373 (Tox) 314 (+ cat A), EUH071 (ICS), 341, 351, 360 _{xy} (CMR)
C/3	302, 312, 332(Tox) 314 (pH \ge 11,5, pH \le 2), 371, EUH071 361 _{f/d} , 373, 362 non-toxic gases which may cause asphyxiation	301, 311, 331, 314, 370, 373 (Tox) 317, 318 , 335, EUH071 (IC)	301, 331, 314, 370, 371, 373 (Tox) 334 (S) 341, 351, 361f/d (CMR) EUH031 (Tox gas release)	301, 311, 331; 371 (Tox) 304, EUH070 (lung, eye damage) 314 cat B and C, 317, 318, 335 (ICS) 361, 362 (R & Lact)
B/2	315, 319, 335, ** (I) 304, EUH066, 336 (solvents) ***	302, 312, 332, 371 (<u>Tox</u>)	302, 332 (<u>Tox</u>) 318 (C)	302, 312, 332, 336 (Tox) 315, 319, EUH066 (I)
A/1	substances which experience shows to be harmless (e.g. water, sugar, paraffin etc.)	303, 313, 333(GHS Tox4) 315, 316, (GHS) 319, 320 (I) 304, 305 (Aspiration) 336 , EUH066 (solvents) and all H-numbers not otherwise listed	 319, 335 (I) 336 (solvent) 304 (Aspiration) Non health hazard H-statement codes 	303, 313, 333 (GHS Tox 4) 305 (ICS) 316 (GHS-> noCLP), 320 (GHS eye irr 2b->CLP 319)

Hazard band allocation differences Dibenzylperoxide (CAS# 94-36-0; ID# 617-008-00-0) EU harmonized classification: H241, H317, H319

Hazard band allocation	IFA Spaltenmodell (2011)	СОЅНН (2009)	EMKG-HOI (2009)	S-OEB
Eye Irrit. 2 H319	2	1	1	2
Skin Sens. 1 H317	4	3	-	3
Final Hazard-Band	4	3	1	3

Einfaches Maßnahmenkonzept Gefahrstoffe

Theo Scheffers question: how to maximize the HB-engine/OELV relation?

HB-engines: COSHH Spaltenmodell EMKG S-OEB

ILO SEIRICHH IFA (2015)

Context

Solvay's questions:

How to get an accepted global HSE CB approach that aligns or includes the national CB-tools.

- 1. How does S-OEB perform relative to COSHH, IFA and EMGK?
- 2. Are the S-OEB concentration ranges valid?

Results: Difference in Hazard Band allocations

Relative to S-OEB, the 3 HB systems assign equal bands for at least 40% of the substances. The remaining substances differ at least one band, with IFA placing more substances in a higher and EMKG doing the opposite

Results: Strength of differentiation rel. to actual OELV

Results: Strength of differentiation rel. to actual OELV

HB-System	p(S-W) of the residuals	Percentage of overall log(OELV) variability explained by hazard banding	Homogeneity of log(OELV) variance within the hazard bands (p(Levene))	Equidistant log(OELV) means. P(Non-Linear contrast.)	Number of pairwise independent log(OELV) means (p < 0.05)	Overall Strength Score		
Vapour/gas (n=	-158)				u v			
S-OEB	3 (52.6%)	3 (38%)	2 (18.7%)	4 (72.2 %)	4 (4 out of 4)	<mark>16</mark>		
сознн	1 (4.02%)	1 (25%)	1 (4.3%)	2 (53.5 %)	1 (1 out of 4)	6		
EMKG	4 (90.9%)	4 (41%)	3 (28.1%)	1 (5.5 %)	2 (2 out of 4)	14		
IFA	2 (12.9%)	2 (36%)	4 (33.8%)	3 (70.1 %)	3 (3 out of 4)	14		
Dust/aerosol (I	Dust/aerosol (n=71)							
S-OEB	1 (0.3%)	4 (50%)	4 (79.3%)	2 (7.8 %)	3 (2 out of 3)	<mark>14</mark>		
сознн	2 (2.5%)	2 (41%)	2 (16%)	3 (17.4 %)	1 (1 out of 3)	10		
ЕМКС	3 (2.9%)	3 (49%)	1 (12.7%)	4 (64.0 %)	3 (2 out of 3)	<mark>14</mark>		
IFA	4 (4.2%)	1 (38%)	3 (42.7%)	1 (0.7 %)	3 (2 out of 3)	12		
S- OEB relates at least as strongly to OELV as the other HB systems								

Results: Validity of the airborne concentration ranges

(2 HB systems only)

Hazard Band	S-OEB concentration range		CO concentra	SHH ation range
	vapour/gas	dust/aerosol	vapour/gas	dust/aerosol
	(ppm)	(mg/m ³)	(ppm)	(mg/m ³)
E/5	0.005-0,05	0.001-0.01	Not established,	consult a specialist
D/4	0.05-0,5	0.01-0.1	<0.5	<0.01
C3	0.5-5	0,1-1	0.5-5	0.01-0.1
B/2	5-50	1-10	5-50	0.1-1
A/1	50-500	10	50-500	1-10

Results: Validity of the airborne concentration ranges

The use of the lower limits of the S-OEB concentration ranges as "indicative exposure limits" for tier 0/1 risk assessment is appropriate.

13-4-2016 Sessie A 11:15

Conclusions

- The strength of the relation between a HBengine and OELV can be determined using 1 picture and 5 statistical indicators with high discriminating power despite a limited dataset
- IFA, EMKG and S-OEB perform better that COSHH with S-OEB having the highest rank

Making it public

R-phrases based

Tabel: Kick-off grenswaardeniveaus (TGG 8 uur) gebaseerd op het TRGS440 gevaarklassenschema

	Gevaarklasse				
	1	2	3	4	
R-zinnen	36, 37, 38,	20, 21, 22	23, 24, 25, 29,	26, 27, 28, 32	
	65, 66, 67*	34, 41, 62,	31, 33, 35, 40,	45, 46,	
		63, 64	42, 43,	48/23,24,25,	
			48/21,21,22,	49	
		60, 61, 68			
Kick-off grenswaarde per g	gevaarklasse er	n fysische staa	t:		
Gasen en dampen (ppm)	4	0,2	0,01	0,001	
Aërosolen (mg/m ³)	0,24	0,06	0,02	0,01	

GHS/CLP H/EUH-code based

Proposed kick-off values for dust/aerosols (basis: COSHH Essentials)

Hazard Group	4	3	2 *	1
H-statements	H334, H340, H341, H350, H350i	H300, H310, H330, H351, H360F/D/FD/Fd /Df, H361f/d/fd, H362, H372	H301, H302, H311, H312, H314, H317, H318, H331, H332, H335, H370, H371, H373, EUH071	H303, H304, H305, H313, H315, H316, H319, H320, H333, H336, EUH066, other H- statements n.o.s., REACH Annex IV
Dusts (mg/m ³)	0,0001	0,01	0,1	1

*: COSHH Essential Groups B+C combined

Proposed based kick-off values for gases/vapors (basis: DGUV IFA Spaltenmodell)

Hazard Group	4	3	2	1
H-statements	H300, H310, H330, H340, H350, H350i, EUH032	H301, H311, H317, H318, H331, H334, H341, H351, H360F/D/FD/Fd/Df, H370, H372, EUH029, EUH031, EUH070	H302, H312, H314, H332, H361f/d/fd, H362, H371, H373, EUH071	H304, H315, H319, H335, H336, EUH066, other H- statements n.o.s., REACH Annex IV
Gases/vapors (ppm)	0,001	0,01	0,1	5

- <u>https://www.dohsbase.nl/en/content-2-2-</u> <u>2/kick-off-levels-2014/</u>
- NVvA (≤2016)/CGC (2014)
- AIHCe2014/ IOHA2015
- BOHS 2016

Publication submitted:

The Annals of Occupational Hygiene

Future steps

- International cooperation to align HB-engines
- Larger dataset
- Optimize allocation H/EUH codes statistically and/or expert judgement
- New concepts:
 - Less bands (4 bands = kick-off)
 - 110 GHS/CLP classifications HB-engine
 - Separate acute and repeated dose

Thanks !

- Blandine Doornaert Solvay, Toxicological and Environmental Risk Assessment (TERA), Lyon, France
- Prof. Gerard van Breukelen
 Department of Methodology and Statistics, CAPHRI Research School of Public Health and Primary Care, University of Maastricht, The Netherlands
- Nathalie Berne, Antoine Leplay Solvay, Industrial Hygiene, Lyon, France

Question:

What to do in practice with large difference between HB-engines?

Dibenzylperoxide

Hazard band allocation	IFA Spaltenmodell (2011)	СОЅНН (2009)	EMKG-HOI (2009)	S-OEB
Eye Irrit. 2 H319	2	1	1	2
Skin Sens. 1 H317	4	3	-	3
Final Hazard-Band	4	3	1	3

Solvay/TSAC/OEB

13-4-2016 Sessie A 11:15