

OELVs from health hazard Control banding

Shifting from R-phrases to H3##-statements.

Theo Scheffers, Geert Wieling

DOHSBASE v.o.f.

The take off & landing of everything

DNEL versus OELV, and other serious business!

Theo Scheffers

www.DOHSBase.com

AIHCe 2014 San Antonio

2 types of workplace exposure limits in the EU

European Union Member States

REACH substance liability:

DNEL

Do they differ?

- Systematic or random?
- To what extend?

OELV

Working

condition

Control:

Compare!

1. OELV : approx. 3800

2. DNEL: approx. 2600

3. 475 substances with both!

REACH DNEL

The wealth of workplace limit values

and n	Status	US	Europe
F OEL's	Legal, Federal	PEL	BLV/IOLV
abase o	Legal, States/Nations	California etc.	All
ive dat	Health based only	ACGIH	DFG, DECOS
nprehensi	Responsible Care/ Product stewardship	WEEL	AGS (Germany)
st con	Product Liability	-	DNEL/DMEL
he mo	License to operate	_	Kick-off (NL)

The ever growing number of IH Tools

OELV

Hazard classifications

International Agency for Research on Cancer World Health Organization

mixtures

XLUNIFAC

Lead substance

Harmonization of IH tools

'Building on Occupational Hygiene Together'

OELVs from health hazard Control banding

Shifting from R-phrases to H3##-statements.

Theo Scheffers, Geert Wieling

DOHSBASE v.o.f.

OELV hierarchy (workers health perspective)

<-Data poor

Data rich ->

Health hazard control banding (simplified)

Hazard category	Health Hazard Identifiers (HHI) like R-phrases, H- & EUH statements and REACH & CMR classifications (IARC, etc.)
4/D	Very toxic, R26, H330, Carc. R45, 49, H350(i), IARC 1, 2a
3/C	Toxic R23,H331, Corrosive 34, 35, H314, EUH071, Possible Carc. R40, H351 , IARC 2b.
2/B	Harmful R20, H332; Irritation R37, H335
1/A	Harmless. R36, 38; REACH non ES obligation, Annex IV

Increasing hazard group # leads in a CB scheme to a more structural & stringent control regime

R-phrase based kick-off levels (2005)

Tabel: Kick-off grenswaardeniveaus (TGG 8 uur) gebaseerd op het TRGS440

gevaarklassenschema

	Gevaarklasse				
	1	2	3	4	
R-zinnen	36, 37, 38,	20, 21, 22	23, 24, 25, 29,	26, 27, 28, 32,	
	65, 66, 67*	34, 41, 62,	31, 33, 35, 40,	45, 46,	
		63, 64	42, 43,	48/23,24,25,	
			48/21,21,22,	49	
			60, 61, 68		
lick-off grenswaarde per g	evaarklasse en	n fysische staa	t:		
asen en dampen (ppm)	4	0,2	0,01	0,001	
ërosolen (mg/m ³)	0,24	0,06	0,02	0,01	

R-phrase based kick-off (2005)

		Gevaarklasse				
	1	2	3	4		
R-zinnen	36, 37, 38,	20, 21, 22	23, 24, 25, 29,	26, 27, 28, 32,		
	65, 66, 67*	34, 41, 62,	31, 33, 35, 40,	45, 46,		
		63, 64	42, 43,	48/23,24,25,		
			48/21,21,22,	49		
			60, 61, 68			
Kick-off grenswaarde per	gevaarklasse en	fysische staa	it:			
Gasen en dampen (ppm)	4	0,2	0,01	0,001		
Aërosolen (mg/m ³)	0,24	0,06	0,02	0,01		

- Guanidine monohydrochloride . No OELV. C_{sat}<0.01 mg/m3
- 100-1000 t/a. Registration May 2013. no DNEL
- R36/38 =>hazard group 1
- R22=> hazard group 2 => kickoff level 0,06 mg/m³

September 25, NVT-AT 2014

Deriving Kick-off Values

Substances with exposure & no OELV

- DOHSBase:
 - 170.000 chemicals
 - ~6000 substances with \geq 1 OELV or DNEL (2500 and growing)
 - **REACH DNEL exempted:**
 - Registration exempted <1 t/year
 - CSA exempted 1-10 ton/year (> 10000)
 - intermediates, polymers, exemptions (natural, non dangerous) etc.
- CLP ~110.000 substances EU notified as dangerous with no REACH registration (=> hazard banding & kickoff target)

One measuring-rod for tox ?

- Bruce Naumann (Merck 90^{ties})
- COSHH essentials (1998)
 - R-phrase 5 category health hazard grouping
- 5 R-phrases Control Bands (2005)
- 11 R-phases and H-statements CB (2014)

Gevarendiamant

SPECIFIEK

BRANDGEVAAR

REACTIVITEIT

1. Health hazard classification criteria CLP

Between endpoints. Mutually independent:

- inhalation, dermal and oral toxicity (TOX),
- irritation, corrosion & sensitization (ICS) and
- carcinogenicity, mutagenicity & reprotoxicity (CMR)

Within endpoints. No common ranking:

- TOX (e.g. acute H300->333, repeated H370->373 per route) dose
- ICS (H314->320) : severity, duration
- CMR (H340->362) weight of evidence human risk

different measuring rules:

- Discrete (Tox)
- Ordinal or categorical(ICS, CMR)
- Single endpoints (lactation)

No universal Tox measuring rod!

Reproducibility: differences in allocating H-statements

Hazard category	DGUV IFA Spaltenmodell	HSE COSHH Essentials	BAUA EMKG (Einfaches Maßnahmenkonzept) (inhalation)
5/E	H300, H310, H330, EU032 H340 (AGS Mut 1AB) H350, H350i (AGS K1/2 & TRGS 906)	H334, H340, H341, H350, H350i	H340, H350, H350i, H360F (TRGS 905 & 906)
4/D	H301, H311, H331 EUH070, EUH029, EUH031 H370, H317 (Sh), H334 (Sa), H318 H360 _{xy} (AGS R _{EF} 1/2) H351 (AGS K3), H341 (AGS M3), H372	H300, H310, H330 H351, H360 _{xy} , H361, H362, H372	H300, H330, H360D, H372, EUH032
3/C	H302, H312, H332 H314 (pH \ge 11,5, pH \le 2), H371, EUH071 H361 _{f/d} , H373, H362 non-toxic gases which may cause asphyxiation	H301, H311, H331, H314, H317, H318 , <mark>H335</mark> , H370, H373, EUH071	H301, H331, H314, H334, H341, H351, H361f/d, H370, H371, H373, EUH031 (TR GS 907)
2/B	H315, H319 damage to the skin during wet work H304, EUH066, H335, H336 Substances chronically harmful in other ways (no H-statement, but still hazardous)	H302, H312, H332 H371	Н302, Н332, Н318
1/A	substances which experience shows to be harmless (e.g. water, sugar, paraffin etc.)	H303, H304, H305, H313, H315, H316, H319, H320, H333, H336, EUH066 and all H-numbers not otherwise listed	H319, H335, H336, H304 No health hazard H-statements

2. Reproducibility of CB hazard grouping

- CB hazard grouping is a combination of:
 - Basic toxicological knowledge
 - Professional judgment
 - Risk perception
 - National sentiment

40% change H-statement in different category!

September 2, NVT-AT 2014

measurement methods

and

OEL's

comprehensive database of

nost

4. Different classification cut-off's for R- & H-

Acute toxicity: LD50 - oral mg/kg

Dose mg/kg	R- phrase	hazard group	CLP hazard class & - category	H-Statement	Hazard group
<5	28	D	Acute Tox 1	300	D
5-25	28	D	Acute Tox 2	300	D
25-50	25	С	Acute Tox 2	300	D
50-200	25	С	Acute Tox 3	301	С
200-300	22	В	Acute Tox 3	301	С
300-2000	22	В	Acute Tox 4	302	В

The most

comprehensive database of OEL's and measurement methods

3. Compare with standard: OELV

Based on the relation between OELVs and the Hazard Grouping in Control Banding schemes

OELV distributions

- 970 unique H3##/OELV combinations
 - 635 vapors
 - 335 dusts

OELV distributions PPM ENKG-HOI per hazard category

OELV distributions mg/m3 IFA Spattenmodell per hazard category

mg/m³

OELV distributions, statistical inference

Physical state ->	VAI	VAPOUR/GAS		DU	IST/AERC	SOL
Institution/ parameter	СОЅНН	EMKG	IFA	сознн	EMKG	IFA
P(Kruskal-Wallis)	8E-47	8E-45	4E-56	3E- 27	6E-19	2,1E-22
Fraction variance explained by grouping	0,33	0,29	0,40	0,35	0,27	0,25
P(log, regression coefficient <> 0)	3E-54	1E-47	1E-70	2E-27	4E-24	2,1E-20

The best OELV-hazard group performances:

- IFA-spaltenmodell/TRG600 for vapour/gas
- COSHH Essentials for dust/aerosol

most

1 Lee

comprehensive database of OEL's and measurement methods

H-statements kick-off values

- 10%-tile of the OELV distribution
- Conservative estimate: p>90% the "real" OELV is higher
- If non compliance, then choose between additional health research or better controls

Hazard Group	1	2	3*	4
H-statements	H334, H340, H341, H350, H350i	H300, H310, H330, H351, H360F/D/FD/Fd /Df, H361f/d/fd, H362, H372	H301, H302, H311, H312, H314, H317, H318, H331, H332, H335, H370, H371, H373, EUH071	H303, H304, H305, H313, H315, H316, H319, H320, H333, H336, EUH066, other H statements n.o.s., REAC Annex IV
Dusts (mg/m³)	0,00001	0,01	0,1	1

*: COSHH Essential Groups B+C combined

Hazard Group	1	2	3	4		
H-statements	H300, H310, H330, H340, H350, H350i, EUH032	H301, H311, H317, H318, H331, H334, H341, H351, H360F/D/FD/Fd/Df, H370, H372, EUH029, EUH031, EUH070	H302, H312, H314, H332, H361f/d/fd, H362, H371, H373, EUH071	H304, H315, H319, H335, H336, EUH066, other H- statements n.o.s., REACH Annex IV		
Gases/vapors (ppm)	0,001	0,01	0,1	5		

comprehensive database of OEL's and measurement methods

The most

H-CI

H₂N

Example

Hazard Group	1	2	3*	4
H-statements	H334, H340, H341, H350, H350i	H300, H310, H330, H351, H360F/D/FD/Fd /Df, H361f/d/fd, H362, H372	H301, H302, H311, H312, H314, H317, H318, H331, H332, H335, H370, H371, H373, EUH071	H303, H304, H305, H313, H315, H316, H319, H320, H333, H336, EUH066, other H- statements n.o.s., REACH Annex IV
Dusts (mg/m³)	0,00001	0,01	0,1	1

- 100-1000 t/a. Registration 2013. no DNEL
- H319 & H315: hazard group 4
- H302: hazard group 3 => kickoff level 0,1 mg/m³ (which is higher than the old R-phrase based kick-off)

Summary

Kick-off values for substances:

- with harmonised, notified or derived H3##-statements, or low or non-dangerous
- with known physical state
- without a higher hierarchy OELV or DNEL,

~ 110.000 notified substances

http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database

Not for nano's

COSHH control measures based exposure ranges

Compliance testing with hazard group Kick-off level

- Noncompliance for all ppm
- Compliance for C & D mg/m3

Improving Control bands

Develop a most powerful, health hazard Control banding

- an optimized number of bands
- international accepted H3## allocation

This may lead to:

- The most robust relation between OELV & hazard banding
- The best Kick-off levels

Hazard Group 1	Hazard Group 1 2	Hazard Group 1 2 3 *
H-statements H334, H340, H341, H350, H350i	H-statements H334, H340, H341, H350, H350i H360F/D/FD/Fd /Df, H361f/d/fd, H362, H372	H-statements H334, H340, H341, H350, H350i H300, H310, H360F/D/FD/Fd H314, H312, H360F/D/FD/Fd H314, H317, /Df, H361f/d/fd, H362, H372 H332, H335, H370, H371, H373, EUH071
H334, H340, H341, H350, H350i	H334, H340, H341, H350, H350i H350i H360F/D/FD/Fd /Df, H361f/d/fd, H362, H372	H334, H340, H341, H350, H350i H350i H350i H360F/D/FD/Fd H360F/D/FD/Fd H361f/d/fd, H362, H372 H311, H312, H314, H317, H318, H331, H362, H372 H314, H317, H318, H331, H332, H335, H370, H371, H373, EUH071
	2 H300, H310, H330, H351, H360F/D/FD/Fd /Df, H361f/d/fd, H362, H372	2 3 * H300, H310, H301, H302, H330, H351, H311, H312, H360F/D/FD/Fd H314, H317, /Df, H361f/d/fd, H318, H331, H362, H372 H332, H335, H370, H371, H373, EUH071

Comments and more info see:

www.dohsbase.nl/en/content-2-2-2/draft-kick-off-values-2014/

ensive database of OEL's

comprel

most

2

Consultancy@dohsbase.nl

Recommendation: Let's harmonize !!!

