

Poster BOHS OH2014 OEL of lead component in mixtures

- Theo Scheffers
- Geert Wieling
- www.dohsbase.com

Simultaneous exposure to chemicals

Approach:

- 1. Sum score
- 2. Non-ideal fugacity/evaporation

Combined exposure

- Not included in:
 - ECETOC-TRA, Stoffenmanager (first tier modelling)
- Included in:
 - ACGIH-TLV for Mixtures
 - Advanced REACH tool (higher tier modelling)
- Still unclear in REACH ES for mixtures (DPD+).

Additive Mixture Formula (Sum-score)

ACGIH-TLV for Mixtures

$$\sum_{i=1}^{i=n} \left(\frac{C_i}{OELV_i} \right) \le 1$$

Case: mixture compliance

Phenol (p), Butanol (b) & Cumene (c) are respiratory irritants (R37/Scoel). Therefore their exposures must be combined:

$$\sum_{i=1}^{i=3} \left(\frac{C_i}{STEL_i} \right) = \sum_{i=1}^{i=3} \left(\frac{C_p}{16} + \frac{C_b}{45} + \frac{C_c}{250} \right) \le 1$$

 C_p , C_b and C_p are:

- 1. determined by their vapour pressure p_i and
- mutual dependant through Raoult's law.

How much lower is STEL_{i,mix} compared to STEL_i?

Vapor pressure of mixtures of liquids

Raoult's law: the pressure of a single-phase mixture is (in theory) equal to the mole-fraction-weighted sum of the components' vapor pressures:

$$\mathsf{p}_{\mathsf{tot}} = \sum_{i=1}^{i=n} (pi * \mathsf{X}_i)$$

where **p** is the mixture's vapor pressure, **i** is one of the components of the mixture and **X** is the mole fraction of that component in the liquid mixture.

 $p_i * X_i$ is the partial pressure of component *i* in the mixture

Raoult's partial vapor pressures and OELs of components in the mixture

					Component
					ideal partial
Component					vp STEL for
composition	Component	Component	Component	Component	the mixture
of a 1:1:1	vapor	mol fraction	partial vp in	regular	air
Molar liquid	pressure in	in the	the mixture	STEL in	composition
mixture	Pa	mixture	in Pa (ideal)	mg/m3	in mg/m3
n-Butanol	891,10	0,33	297,03	45	26,74
Phenol	9,98	0,33	3,33	16	0,11
Cumene	598,5	0,33	199,50	250	99,78
Mixture		Σ=	500	Σ=	127

 $STEL_{c, part} = vp_c*/vp_t*STEL_c = 199/500*250 = 99,8$

$$\sum_{i=1}^{i=3} \left(\frac{STEL_{i part}}{STEL_{i}} \right) \le 1 \qquad \sum_{i=1}^{i=3} \left(\frac{26.7}{45} + \frac{0.11}{16} + \frac{99.8}{250} \right) = 1$$

Non-ideal liquid mixtures

Estimate (partial) vapor pressures using XLUNIFAC:

$$VP_{tot} = \sum_{i=1}^{i=n} (vp_i * X_i * a_i)$$

where \boldsymbol{a} is the mixture's non-ideal vapor pressure activity coefficient and $a_i * vp_i * X_i$ is the adjusted partial vapor pressure vp_i of component \boldsymbol{i} in the mixture

UNIFAC partial vapor pressures and OELs of components in the workshop mixture

					Component
			Component		STEL for the
Component			partial		mixture
composition	Component	Component	UNIFAC vp	Component	UNIFAC air
of a 1:1:1	partial vp in	UNIFAC	in the	regular	mass
Molar liquid	the mixture	activity	mixture in	STEL in	composition
mixture	in Pa (ideal)	coefficient	Pa	mg/m3	in mg/m3
n-Butanol	297,03	0,7593	225,53	45	16,53
Phenol	3,33	0,6411	2,13	16	0,06
Cumene	199,50	1,9361	386,25	250	157,29
Mixture	Σ = 500	Σ=	613,91	Σ=	173,88

 $STEL_{c, part} = vp_c*/vp_t*STEL_c = 386/614*250 = 157,3$

$$\sum\nolimits_{i=1}^{i=3} \ (\frac{STEL_{i,part}}{STEL_{i}}) \leq 1 \qquad \qquad \sum\nolimits_{i=1}^{i=3} \ \left(\frac{16,5}{45} + \frac{0,06}{16} + \frac{157,3}{250}\right) = 1$$

$$\sum_{i=1}^{i=3} \left(\frac{16,5}{45} + \frac{0,06}{16} + \frac{157,3}{250} \right) = 1$$

Conclusion

- non-ideal behavior of components in liquid mixture:
 - enhances & inhibits evaporation.
- Based on precautionary:
 - use the lowest Raoult or UNIFAC adjusted component OEL, to test compliance for the whole mixture
- to test irritation risk of example mixture, use
 - Cumene Raoult STEL 99,8 mg/m3/15min or
 - n-Butanol UNIFAC STEL 17 mg/m3/15minPhenol adjusted OEL is <LoD