

Theo.Scheffers@tsac.nl
Session G1 8th International Control Banding Workshop
Session 3 – Hazard Banding/Occupational Exposure Banding
Tue, 9/25: 1:45 PM - 2:45 PM

The 11th International Occupational Hygiene Association (IOHA)
International Scientific Conference

IOHA 2015 (London)

The need for international alignment of OH tools

And IOHA's role in this

www.dohsbase.com Theo.Scheffers@tsac.nl

Theo Scheffers alignment of OH Tools 7ICBW – Tuesday 28 April 2015 10:30-12:00

The wealth of 'chemicals in the workplace control tools'

EH40/2005

- **OELVs**
- Health hazard classifications

Hazard Banding Engines



Exposure Models **Stoffenmanager** 7

Handling Mixtures

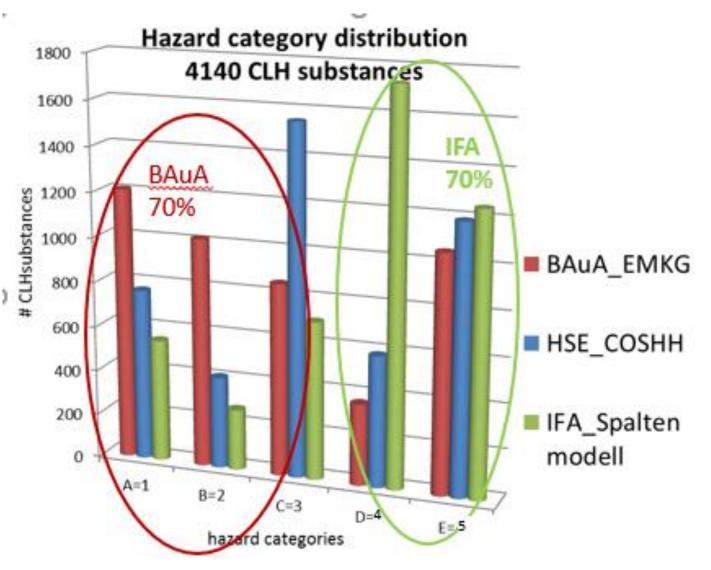
Strategies !

hazard banding engines in control banding tools

- OELVs
- Health hazard classifications
- 40+ GHS/CLP HB/OEB-Engines

- Control Banding tools
- **♥**Stoffenmanager®7

- Compliance Statistics
- Handling Mixtures
- Strategies



Expert driven allocation of H-codes

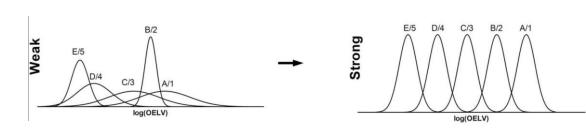
Hazard band	DGUV IFA Spaltenmodell	HSE COSHH	BAUA EMKG (inhalation)*	Solvay OEB
E/5	300, 310, 330 (Tox) 340, 350, 350 (CM) EU032 (Tox gas release)	340, 341, 350(i) (CM) 334 (S) EU070 (<u>Tox</u>)	340, 350, 350i (CM) 360 _F (R)	372 (Tox) 340, 350 (CM) 334 (ICS)
D/4	301, 311, 331, 370, 372 (Tox) 341, 351, 360 _{xy} (CMR) EUH029, EUH031 (Tox gas release) 317, 334, 318, EUH070 (ICS)	300, 310, 330, 372 (<u>Tox</u>) 351, 360 _{xy} , 361, 362 (CR)	300, 330, 372 (<u>Tox</u>) 360 _D (R) EUH032 (<u>Tox</u> gas <u>release</u>)	300, 310, 330; 370, 373 (Tox) 314 (+ cat A), EUH071 (ICS), 341, 351, 360 _{xy} (CMR)
C/3	302, 312, 332(Tox) 314 ($pH \ge 11,5$, $pH \le 2$), 371, EUH071 361 _{f/d} , 373, 362 non-toxic gases which may cause asphyxiation	301, 311, 331, 314, 370, 373 (Tox) 317, 318, 335, EUH071 (IC)	301, 331, 314, 370, 371, 373 (Tox) 334 (S) 341, 351, 361f/d (CMR) EUH031 (Tox gas release)	301, 311, 331; 371 (Tox) 304, EUH070 (lung, eye damage) 314 cat B and C, 317, 318, 335 (ICS) 361, 362 (R & Lact)
B/2	315, 319, 335, ** (I) 304, EUH066, 336 (solvents) ***	302, 312, 332, 371 (<u>Tox</u>)	302, 332 (<u>Tox</u>) 318 (C)	302, 312, 332, 336 (Tox) 315, 319, EUH066 (I)
A/1	substances which experience shows to be harmless (e.g. water, sugar, paraffin etc.)	303, 313, 333(GHS Tox4) 315, 316, (GHS) 319, 320 (I) 304, 305 (Aspiration) 336, EUH066 (solvents) and all H-numbers not otherwise listed	319, 335 (I) 336 (solvent) 304 (Aspiration) Non health hazard H- statement codes	303, 313, 333 (GHS Tox 4) 305 (ICS) 316 (GHS-> noCLP), 320 (GHS eye irr 2b->CLP 319)

Comparing 3 Hazard Banding Engines

Need for alignment in Hazard Banding **Engines** The technical basis for COSHH essentials: Easy steps to control konzept für Gefahrstoffe

HB-engines variability

Substance	H-codes	Band# per HB-engine		B-engine
		IFA	COSHH	EMKG
Maleic anhydride 108-31-6	H302 H314 H334 H317	4	5	3
Diisobutylene (DIB) 25167-70-8	H304 H336	2	1	1
Cumene 98-82-8	H304 H335	2	3	1
Ethanol 64-17-5	(H225) (IARC 1)	-	-	-


In red: the H-code determining the band #

Band# determines control regime

Method to establish and improve the HB/OELV relation

the strength score method

Ann. Occup. Hyg., 2016, 1–13 doi:10.1093/annhyg/mew050

On the Strength and Validity of Hazard Banding

Theo Scheffers^{1,2*}, Blandine Doornaert³, Nathalie Berne⁴, Gerard van Breukelen⁵, Antoine Leplay⁴ and Erik van Miert⁶

 $Hazard\ Banding\ (HB)\ is\ a\ process\ of\ allocating\ chemical\ substances\ in\ bands\ of\ increasing\ health\ hazard\ based\ on\ their\ hazard\ classifications.\ Recent\ Control\ Banding\ (CB)\ tools\ use\ the\ classifications\ of\ banding\ (CB)\ tools\ use\ the\ classification\ of\ banding\ (CB)\ tools\ use\ the\ banding\ (CB)\ tools\ tools\ use\ the\ banding\ (CB)\ tools\ too$

HB	IFA	COSHH	EMKG (inhalation)	Global
OSS=	12	10	14	Maximal
E/5	300, 310, 330 <u>(Tox)</u> 340, 350(j) (Car, M) EU032 (Tox gas release)	EU070 (Tox) 340, 341, 350(i) (Car, M) 334 (S)	340, 350(i) (Car,M) 360F (R)	<i></i>
D/4	EUH029, EUH031 (Toxic gas release) 317, 334, 318, EUH070 (I,C,S)	351, 360xy, 361, 362 (Car.R) EUH070 (I.C)	300, 330, 372 (Tox) 360D (R) EUH032 (Toxic gas release)	X
C/3	361 f/d, 362 (R)	301, 311, 331, 314, 370, 373 (Tox) 317, 318, 335, EUH071 (I,C)	301, 331, 314, 370, 371, 341, 351, 361f/d (Car,M.R) 373 (Tox) 334 (S) EUH031 (Toxic gas release)	
B/2	315, 319, 335 (I) 304, EUH086, 336 (solvents)	302, 312, 332, 371 (Tox)	302, 332 (Tox) 318 (C)	4
A/1		303, 313, 333(Tox) 315, 319,316,320(I) 304, 305 (Aspiration hazard) 336 (Tox), EUH066 (solvent effect) and all H-numbers not otherwise listed	319, 335 (I) 336 (Tox) 304 (Aspiration hazard) non health hazard H-codes	

https://doi.org/10.1093/annhyg/mew050

GHS/CLP H/EUH-code based kick-off levels

DOHSB SE

Proposed kick-off for dust/aerosols

(basis: COSHH Essentials)

,	(busis, dobini busintalis)				
	Hazard Group	4	3	2 *	1
	H-statements	H334, H340, H341, H350, H350i	H300, H310, H330, H351, H360F/D/FD/Fd /Df, H361f/d/fd, H362, H372	H301, H302, H311, H312, H314, H317, H318, H331, H332, H335, H370, H371, H373, EUH071	H303, H304, H305, H313, H315, H316, H319, H320, H333, H336, EUH066, other H- statements n.o.s., REACH Annex IV
	Dusts (mg/m³)	0,0001	0,01	0,1	1

^{*:} COSHH Essential Groups B+C combined

Proposed kick-off for gases/vapors

(basis: DGUV IFA Spaltenmodell)

Hazard Group	4	3	2	1
H-statements	H300, H310, H330, H340, H350, H350i, EUH032	H301, H311, H317, H318, H331, H334, H341, H351, H360F/D/FD/Fd/Df, H370, H372, EUH029, EUH031, EUH070	H302, H312, H314, H332, H361f/d/fd, H362, H371, H373, EUH071	H304, H315, H319, H335, H336, EUH066, other H- statements n.o.s., REACH Annex IV
Gases/vapors (ppm)	0,001	0,01	0,1	5

https://www.dohsbase.nl/en/content-2-2-2/kick-off-levels-2014/

10/3/2018

OELV domains and health-based hierarchy

legal compliance limits

may be higher (or lower) than the health based OELV due to technical and/or economical feasibility:

- EU BLV,
- TRGS900
- Fr VLEP
- OSHA PEL
- [UK WEL]

....

health based limits

Scientific evaluation, health based only DFG, SCOEL, DECOS (Gr/WGD), ACGIH-TLV (>1996) NIOSH REL (≥ 2013), DMEL, RAC (?, 2018)

feasibility not excluded

AGS, NIOSH REL (<2013), EU IOLV, Corporate, ECETOC, ORAS/WEEL, older (<1996) health based (WGD)

Default factor. Prescriptive, process based DNEL, Dutch Health Council Gr2000-15/OSH

Hazard Banding

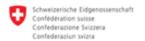
Kick-off levels, Control Banding concentration ranges, Generic Exposure Values

Modelling/correlation

read-across, single endpoint MTD & RD50, QSAR, structural activity TTC

expert judgment (Nano)

TSAC, DOHSBase & The Global Landscape of Occupational Exposure Limits—Implementation of Harmonization Principles to Guide Limit Selection. M. Deveau, C-P Chen, G. Johanson, D. Krewski, A. Maier, K. J. Niven, S. Ripple, P. A. Schulte, J. Silk, J. H. Urbanus, D. M. Zalk & R. W. Niemeier, JOEH, 12:sup1, S127-S144, DOI: 10.1080/15459624.2015.1060327


Epidemiology . >

Data rich

<-Data poor

NVvA Conference 2018

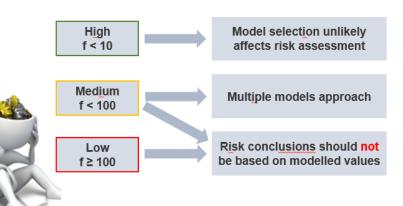
Nenad Savic

Institute for Work and Health (IST) Route de la Comiche 2, Epalinges-Lausanne Switzerland

Annals of Work Exposures and Health, 2018, Vol. 62, No. 1, 72-87 doi: 10.1093/annweh/wxx079 Advance Access publication 27 September 2017

Original Article

ART, Stoffenmanager, and TRA: A Systematic Comparison of Exposure Estimates Using the **TREXMO Translation System**


Nenad Savic1*, Bojan Gasic2 and David Vernez1

Abstract

Several occupational exposure models are recommended under the EU's REACH legislation. Due to limited availability of high-quality exposure data, their validation is an ongoing process. It was shown, however, that different models may calculate significantly different estimates and thus lead to potentially dangerous conclusions about chemical risk. In this paper, the between-model translation rules

Conclusion

- Differences of few orders of magnitude
- ART (Tier 2) calculates often higher predictions with exposure parameters that describe higher exposure concentrations (e.g. high VP and conc, spraying etc)
- The tiered approach is <u>not</u> applicable always
- Different model different risk conclusion
- Multiple model approach reasonable

10/3/2018

Developments in last 3 years

- strength based scientific method to improve HB-OELV relation is now available!
- Alignment is supported by EU platform of Industrial Hygiene Societies
- No new CB's
- Good contacts with Pharma, no intention to voluntary improve or align enterprise HB engines
- No response from national institutes on plea to support alignment

10HA 2018

Conclusion & Recommendations

- Current HB engines with 5 bands are over precise: 4 bands makes more sense
- Much room to improve HB-OELV relation; strength based method available!
- Claims that >10 different CB's supports SME's is unrealistic
- CB use should be discouraged if no mutual alignment is reached in say 3 years
- Possible solutions:
 - Alignment of I/OH tools must become a part of IOHA strategy
 - IOHA alignment ambassador?
 - Alignment Award?
 - support to align tools (EU-platform, ILO?)

10HA 2018

10/3/2018

Theo.Scheffers@tsac.nl

Session G1 8th International Control Banding Workshop Session 3 – Hazard Banding/Occupational Exposure Banding Tue, 9/25: 1:45 PM - 2:45 PM

The 11th International Occupational Hygiene Association (IOHA)
International Scientific Conference