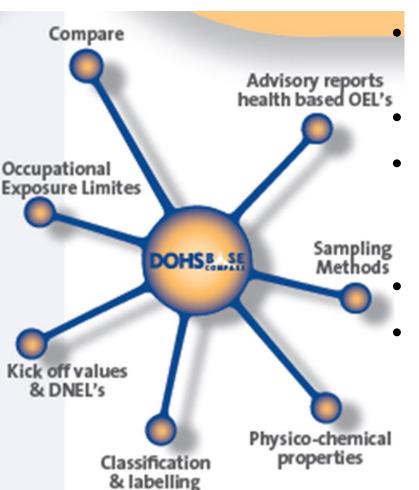


Differences in Control Banding health hazard categorization

And how to find the best performing scheme

www.dohsbase.com
Theo.Scheffers@dohsbase.nl
Geert Wieling

Agenda


- About DOHSBase
- The control banding jungle
- Best performing hazard categorization
- The CB exposure concentration ranges

About DOHSBase

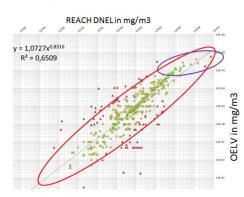
<u>Dutch Occupational Hygiene</u> <u>Society spinoff</u>

Started in 1995/ Int. 2010

Offering extended info on physchem, health hazard, OELV and sampling methods

170.000 substances

Hazard categorization is used in the DOHSBase Compare tool and in the Kick-off levels



OH tools / Research / myth bursting

Research and publications:

- DNEL vs OELV (BOHS/AIHCe 2014)
- Kick-off levels (next presentation)
- Performance of GHS /CLP hazard categorizations (this presentation)

Control banding fundament: Categorical measuring-rod for health hazard

- 90^{ties}: Bruce Naumann (Pharma)
- 1998: COSHH essentials
 - R-phrase 5 category health hazard grouping
- 2005 (Kick-off): 5 R-phrase CBs
- 2015: >>13 R-phases and H-statements CB's

LONDON 2015

Much discussed CB tools

- Einfaches Maßnahmenkonzept Gefahrstoffe (GE, Federal BAuA)
- COSHH essentials (UK, HSE)
- IFA GHS Spaltenmodell (GE, Assurance companies)

health hazard categorization

Health hazard endpoints GHS H3## codes / EU R-phrases

TOX (lethal & organ, acute & repeated)

Irritation, Corrosion & Sensitization

Carcinogenicity, Mutagenicity, Reprotox

Other

Hazard cat. with control regime

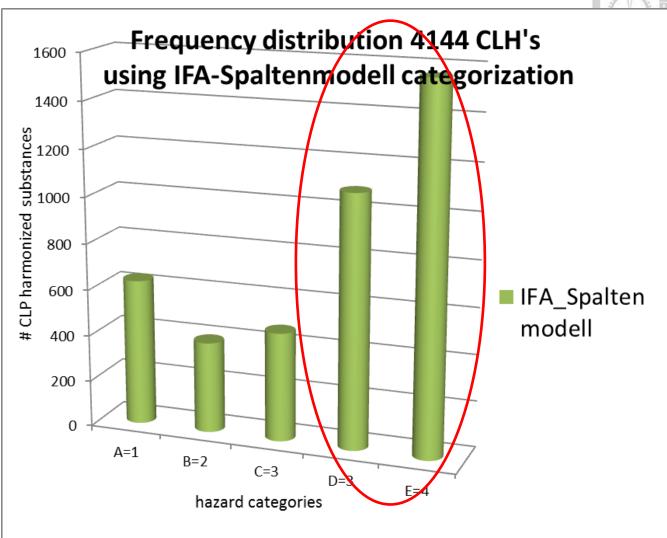
D (/E)

C

В

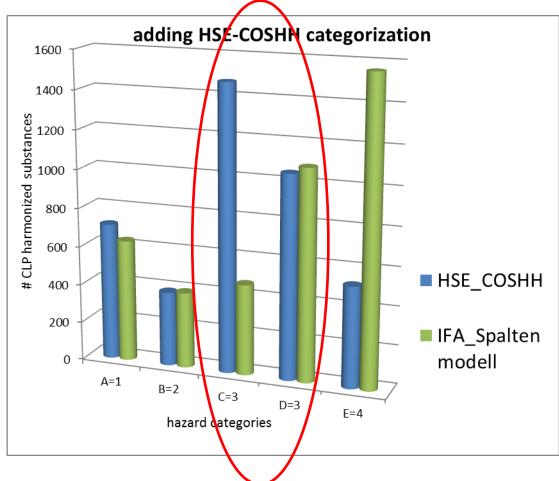
Α

differences in allocating H-statements

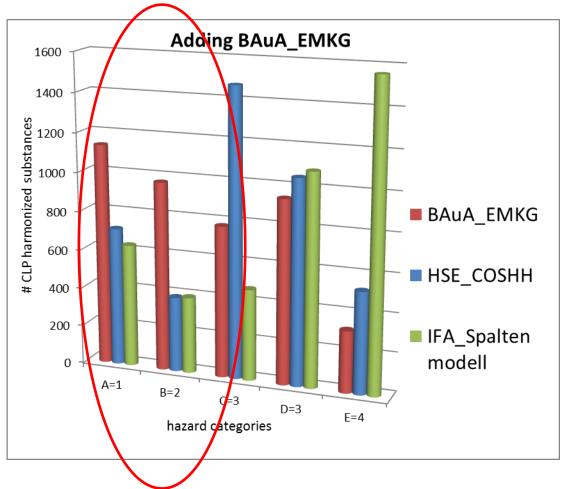


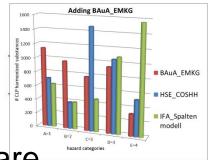
W 1	Hazard category	DGUV IFA Spaltenmodell	HSE COSHH Essentials	BAUA EMKG (Einfaches Maßnahmenkonzept) (inhalation)	
ASAL EN	5/E	H300, H310, H339, EU032 H340 (AGS Mut 1AB) H350, H350i (AGS K1/2 & TRGS 906)	H334, H340, H341, H350, H350i	H340, H350, H350i, H360F (TRGS 905 & 906)	
OFFS and med	4/D	H301, H311, H331 EUH070, EUH029, EUH031 H370, H317 (Sh), H334 (Sa), H318 H360 _{xy} (AGS R _{EF} 1/2) H351 (AGS K3), H341 (AGS M3), H372	H300, H310, H330 H351, H360 _{xy} , H361, H362, H372	H300, H330, H360D, H372, EUH032	
aataoase oi o	3/C	H302, H312, H332 H314 (pH ≥ 11,5, pH ≤ 2), H371, EUH071 H361 $_{f/d}$, H373, H362 non-toxic gases which may cause asphyxiation	H301, H311, H331, H314, H317, H318, H335, H370, H373, EUH071	H301, H331, H314, H334, H341, H351, H361f/d, H370, H371, H373, EUH031 (TR GS 907)	
erensive adi	2/B	H315, H319 damage to the skin during wet work H304, EUH066, H335, H336 Substances chronically harmful in other ways (no H-statement, but still hazardous)	H302, H312, H332 H371	H302, H332, H318	
ndwoo so	1/A	substances which experience shows to be harmless (e.g. water, sugar, paraffin etc.)	H303, H304, H305, H313, H315, H316, H319, H320, H333, H336, EUH066 and all H-numbers not otherwise listed	H319, H335, H336, H304 No health hazard H-statements	

IFA: 60% H3## in D & E



COSHH 60% H3## in C & D




EMKG: 70% H3## in A, B & C

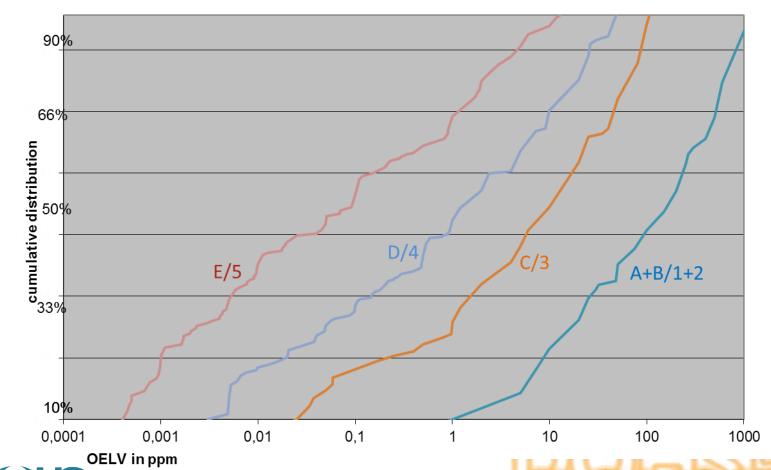
Explanation and consequences

Health hazard categorization in Control banding are

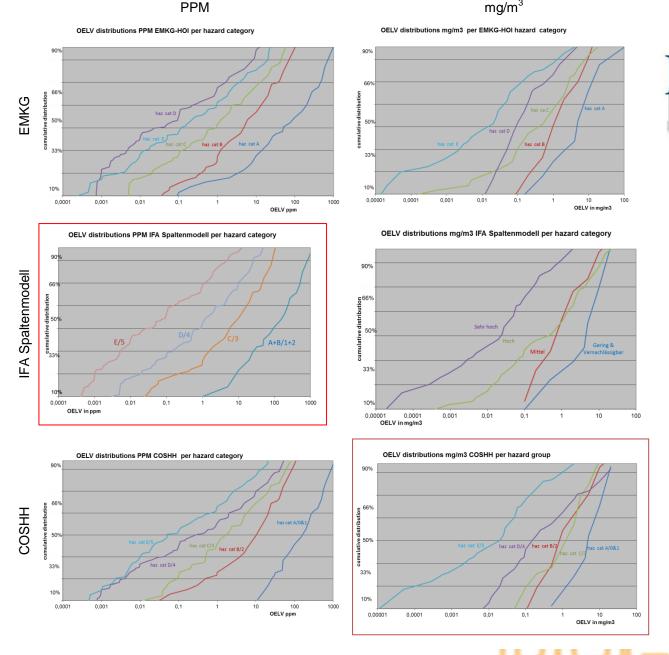
- subjective
- inconsistent

It may lead to (1) differences in hazard/risk level & control regimes (2) confusion in SME's (3) OH reputation damage Damage control needed:

- 1. Back to traditional OELV compliance control?
- 2. Limit to niche/region
- 3. "Improve" health hazard categorization.
- 4. Compare with external standard: relation between health hazard categorization and OELV distribution
 - Different schemes
 - health based only OELVs



4. relation between health hazard categorization and OELV



OELV distributions PPM IFA Spaltenmodell per hazard category

theo.scheffers@dohsbase.nl Validation of health hazard categorization

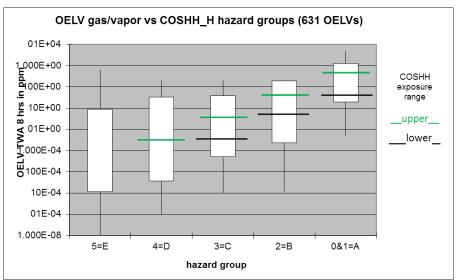
LONDON 2015

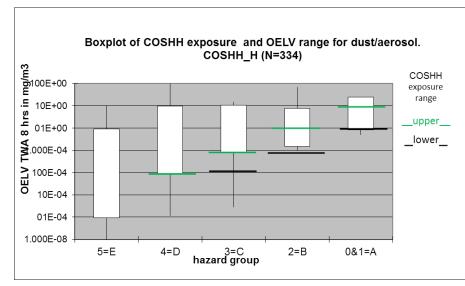
OELV variance explained by health hazard categorization

Physical state ->	VAPOUR/GAS N=631		DUST/AEROSOL N=338			
Schemes/ Statistical test	EMKG	IFA	COSHH	EMKG	IFA	COSHH
distribution free ANOVA P(Kruskal-Wallis)	8E-45	4E-56	8E-47	6E-19	2E-22	3E-27
Var[log(OELV)] explained by categorization	0,29	0,40	0,33	0,27	0,25	0,35

The best health hazard categorization:

- IFA-spaltenmodell for vapour/gas
- COSHH for dust/aerosol





1.000E-08 most

Validity of Control band Concentration range

Current OELV concentration ranges are:

- Much broader than in the 90^{ties}
- too optimistic for the vapour categories (combine B & C)
- Inadequate for dust categories C (should be combined with B)

Recommendations and prophecy

- OH should enroll ONE UNIVERSAL health hazard categorization scheme (local/niche schemes allowed)
- Adjust current used CB concentration ranges
- Use ANOVA/goodness-of-fit, to select the "best performing" health hazard categorization from all existing schemes and experts suggested improvements
- Finding best performing health hazard categorization will improve CB, its concentration ranges and the derived Kick-off levels (presentation Geert)

Align health hazard categorization!! Visit following presentations on Kick-off levels & Harmonization of OH tools

More information:

www.dohsbase.com

theo.scheffers@dohsbase.nl

+31616617721

Skype: theo.scheffers

IOHA & BOHS 2015

London: Building on Occupational Hygiene Together

www.iohalondon2015.org