

Basic characterization theo.scheffers@tsac.nl

The stepwise approach to establish a sampling plan in a workplace survey

PDC Testing Compliance with Occupational Exposure Limits, 26 April 2015 Session 2. 09:45 Theo Scheffers Basic characterization

manage exposure in the workplace

Workplace survey & compliance testing

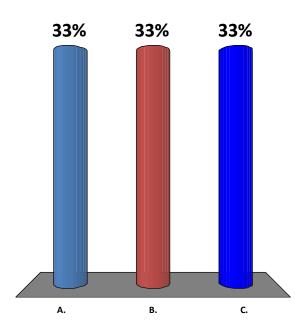
This is the bit we are talking about

IONDON 2015

10th IOHA International Scientific Conference

Workplace survey

- I. Basic characterization
- II. Choosing the appropriate OEL
- III. Workplace air sampling
- IV. Compliance testing



Polling 1. What is your experience with workplace survey?

- A. None
- B. Limited
- C. Extensive

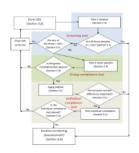
OHA 10th IOHA International Scientific Conference

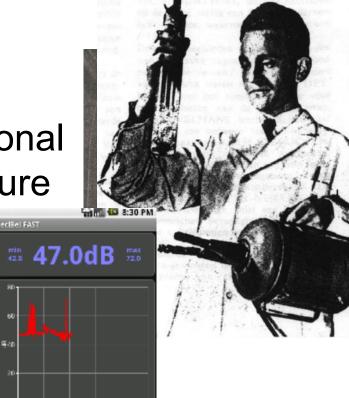
Goal of the workplace survey

To know workers exposure in space & time.

- Easy for ionising radiation
- Difficult for most other occupational loads including chemical exposure
 - Expensive

LONDON 2015


 Complicated (sampling & analytical)


10th IOHA International

Scientific Conference

Exposure assessment & compliance testing strategies

Numerous guidances:

- CEN 689. EU (1996). Outdated as EU standard since 2006. Update 2016(?).
- AIHA "A Strategy for Assessing and Managing Occupational Exposures". (Third edition 2006)
- Leidel & Busch NIOSH 173 (1977) Occupational exposure sampling strategy manual
- The BOHS-NVvA guidance (2011) for group and individual compliance testing
- Practical guidelines within the framework of the EU chemicals at work directive (98/24/EC)
- The ECHA worker exposure assessment guidance within REACH (2010)

Describe, focus and minimize sampling effort

See further: <u>http://www.tsac.nl/websites.html#Exposure_assessment</u>

10th IOHA International Scientific Conference

Guidances on workplace survey

I. Basic characterization

- 1. Substance risk potential information
- 2. SEG formation
- 3. Prior knowledge
- 4. Sampling strategy
- 5. Sampling & analytical methods libraries
- II. Choosing the best OEL
- III. [Workplace air sampling]
- IV. Compliance testing

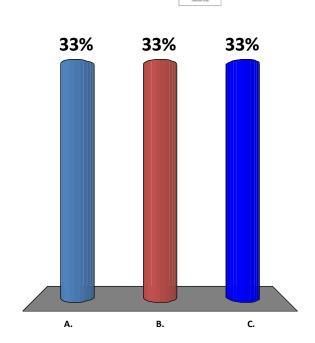
10th IOHA International Scientific Conference

Substance risk potential information

Goal: to focus on substance with high health hazard, high exposure potential and low OEL

- Physical Chemical properties
 - Qualitative: molecular dispersion (ppm) or conglomerates (mg/m³)
 - Quantitative: Saturation concentration (C_{sat}) or dustiness
- Health hazard properties (GHS/CLP)
 http://www.tsac.nl/websites.html#Properties

 Risk potential assessment tools like Control Banding, Risk Ranking, ratio OEL/ C_{sat} etc.

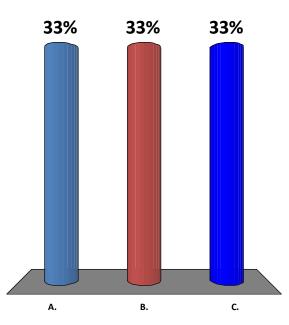


10th IOHA International Scientific Conference

Polling 2. Do you use risk potential assessment tools ?

- A. Control Banding,
- B. ratio OEL/ Csat
- C. Others

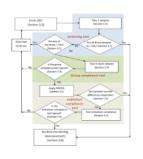
IOHA 10th Scie


10th IOHA International Scientific Conference

Polling 3. For exposure assessment it is important to know

- A. that the substance is a liquid/Gas/Solid
- B. The saturation concentration or dustiness in relation to the OEL

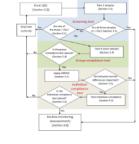
10th IOHA International Scientific Conference


Basic characterization, stepwise approach

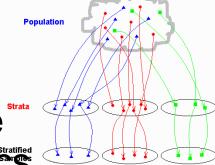
- 1. Substance risk potential information
- 2. SEG formation
- 3. Prior Knowledge
- 4. Sampling strategy

Similar Exposure Group

Since compliance of all workers on all shifts cannot be established due to limited resources, we (= industrial hygienists):

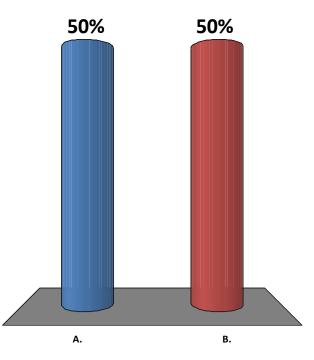

Group workers by task/job

LONDON 2015


10th IOHA International

Scientific Conference

- Use prior knowledge to focus on high substance contact (level, duration).
- Fill data gaps with Lognormal exposure distribution and uncertainty with statistics
- Sample with lowest sound frequency



What is closest to a similar exposure group?

- A. A cluster of comparable job titles at one premises
- B. A task within industry

10th IOHA International Scientific Conference

Similar Exposure Group (SEG)

- Workers step in and out:
 - When starting and ending their job (long term) and
 - Daily: begin and end of shift
- workers perform tasks within the shift.
- SEG activity may change (slowly) in time

Within REACH SEG's are sometimes defined as exposure scenario's (lower case)

10th IOHA International Scientific Conference

Similar Exposure Group (SEG)

A SEG is group of workers having the same general exposure profile because of

- the similarity and frequency of the tasks they perform,
- the materials and processes with which they work, and
- the similarity of the way they perform the tasks.

(Mulhausen et al, 1998 p 42)

10th IOHA International Scientific Conference

DHA 10th IOHA Scientific

10th IOHA International Scientific Conference

PDC Compliance testing, 26 April 2015, S2 Theo Scheffers. Basic characterization

BOHS The Chartered Society for Worker Health Protection

Basic characterization, stepwise approach

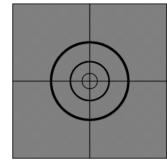
- 1. Substance risk potential information
- 2. SEG
- 3. Prior Knowledge
- 4. Sampling strategy
- 5. Sampling & analytical methods libraries

10th IOHA International Scientific Conference

Prior Knowledge

- Earlier measurements
- Publications
- Exposure databases: MEGA (Gr), COLCHIC & SCOLA (Fr), OSHA (USA), NEDB (UK), EXPO (NO)
- Modelling (deterministic or expert judgment)
- Read across (substance or circumstance)
- e-SDS with exposure scenarios

Information may be limited or outdated!



10th IOHA International Scientific Conference

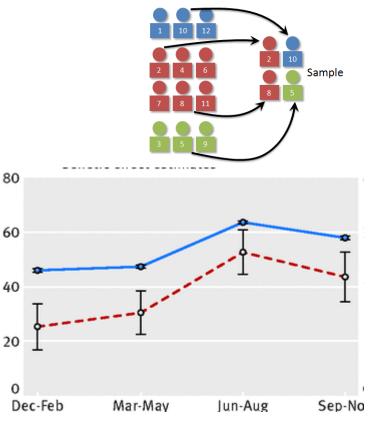
Basic characterization, stepwise approach

- 1. Substance risk potential information
- 2. SEG
- 3. Prior Knowledge
- 4. Sampling strategy
- 5. Sampling & analytical methods libraries

10th IOHA International Scientific Conference

Sampling strategy

Random stratified sampling


- Within the SEG
- In time/seasons
- Between shifts

to establish the "real" exposure variability!

10th IOHA International Scientific Conference

Basic characterization, stepwise approach

- 1. Substance risk potential information
- 2. SEG
- 3. Prior Knowledge
- 4. Sampling strategy
- 5. Sampling & analytical methods libraries

10th IOHA International Scientific Conference

Sampling & analytical methods

Electronic libraries:

- NIOSH analytical method; (4e edition)
- OHSA Sampling & Analytical Methods
- methods of the 2e list of EU IOLV's;
- GESTIS >100 substances;
- INRS sampling methods (in French);
- Commercial databases like IFA, DOHSBase (>3000), ALS

See http://www.tsac.nl/websites.html#Workplace_measurement_methods

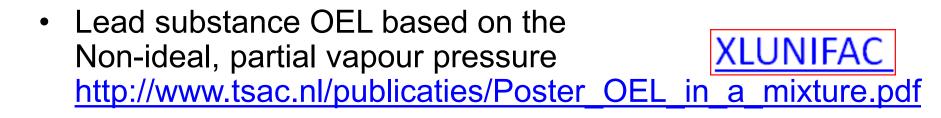
10th IOHA International Scientific Conference

Outside the scope of today

- BM
- Skin permeation
- mixtures

OHA 10th IOHA International Scientific Conference

mixtures


Production of the second secon

• Sum score

$$\sum_{i=1}^{i=n} \left(\frac{C_i}{OELV_i} \right) \le 1$$

- Effect specific Sum score
- Risk Assessment Score C_{sat}/OEL*Tox

Manufacturers in REACH

10th IOHA International Scientific Conference

Summar & Next

I. Basic characterization Stepwise approach

- 1. Substance information
 - II. Choosing the OEL (next presentation)
- 2. SEG
- 3. Prior Knowledge
- 4. Sampling strategy
- III. Sampling (not in PDC)
- IV. Exposure variability & compliance testing (after the break)

10th IOHA International Scientific Conference

IOHA & BOHS 2015 London: Building on Occupational Hygiene Together

www.iohalondon2015.org

